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tation for the Green’s operator, G(E1), is obtained by
imposing absorbing boundary conditions (ABC). The re-Miller and coworkers have proposed calculating the cumulative

reaction probabilities of a chemical reaction through the computa- sulting equation for N(E) is
tion of the few lowest eigenvalues of a matrix Z. In this study, the
possibility of computing these eigenvalues using the iterative IRLM

N(E) 5 4Tr(«1/2
r G«pG*«1/2

r ), (1)approach of Sorensen is investigated. The application to collinear
H 1 H2 R H 1 H2 reactions shows that it is possible to compute the
physical eigenvalues of Z iteratively using the IRLM formulation where «r is the absorbing potential in the reactant valley
with a Chebychev preconditioned Z matrix as the primary matrix. and «p is that in the product valley. G is the Green’s func-
Because the IRLM formulation only requires simple matrix–vector

tion operator given byoperations, one never needs to assemble and store the whole Z

matrix. Moreover, the multiplication of Z by a vector takes full advan-
tage of the underlying sparseness of the matrix. This study presents G 5 (E 1 i(«r 1 «p) 2 H)21, (2)
several new and successful strategies to improve the convergence
speed of IRLM, as well as strategies for obtaining the eigenvalues

where H is the Hamiltonian of the reactive system and Eof Z when the eigenvalue span of Z is very large (1–1010). Q 1997

is the energy of the reaction.Academic Press

The impediments to treating four-atom systems without
introducing serious approximations in the dynamical calcu-

I. INTRODUCTION lations are related to the number of active degrees of free-
dom that must be treated. A three-atom system has three

In recent years, considerable progress has been made in internal dimensions, while a four-atom system has six inter-
developing methods for carrying out exact calculations of nal dimensions. This increase in the internal dimensions
the state-to-state reactive cross sections for three-atom causes a very significant increase in the dimensionality of
systems [1]. While there have been recent reports of exact the problem. For each internal dimension one must use a
numerical results for a few four-atom systems [2], there sufficient number of DVR points to achieve convergence
still is a need for more efficient methods that can be used to in the scattering calculations. For instance for a typical
study reactions involving systems with four or more atoms. three-atom system such as the reaction Li 1 HF R LiF 1

Recently, Miller and coworkers [3] developed a new H the number of DVR basis functions needed to converge
approach for calculating the cumulative reaction probabili- the cumulative reaction is about 203, whereas for a four-
ties, N(E) for a chemical reaction. The purpose of this atom reaction such as Cl 1 O3 R ClO 1 O2 the number
paper is to report an extension to their approach that has of basis functions would be about 206. Miller and coworkers
the potential to improve significantly the computational [2c] have determined cumulative reaction probabilities,
performance of the method. This may be significant be- N(E), as a function of energy for the reaction: H2 1 OH
cause the study of the dynamics of simple chemical reac- R H 1 H2O. In that study they were able to use a reduced
tions in the gas phase is a major research area of modern number of DVR points for the four less-coupled degrees
physical chemistry. In particular, the ability to carry out of freedom. This resulted in a significantly reduced dimen-
exact numerical reactive-scattering calculations is im- sionality for N(E) (i.e., about 1 3 105 to 2 3 105 for the
portant for modeling combustion and atmospheric pro- energy range studied). While such a reduction in grid points
cesses. is possible for this system, there continues to be a strong

In the approach of Miller and coworkers [3] the Hamilto- interest in improving the underlying computational meth-
nian and the flux operators are computed in a discrete ods so that a broader range of systems with four and more

atoms can be studied.variable representation (DVR) and an accurate represen-
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The majority of the computational time required to solve
Eq. (1) is devoted to obtaining the eigenvalues for the
Hermitian operator Z,

Z 5 Af «21/2
r (H 1 i(«r 1 «p) 2 E)«21

p (3)
(H 2 i(«r 1 «p) 2 E)«21/2

r

in an appropriate DVR representation. Once the eigenval-
ues are known, the cumulative reaction probability, N(E),
can be obtained as

N(E) 5 O
k

1
lk

, (4)

where hlkj are the eigenvalues of Z.
In the next section, the characteristics of the matrix Z

will be discussed in order to provide a bases for introducing
our extensions to the computational approach. In Section

FIG. 1. lk vs. k for Z matrix, where the eigenvalues are arranged in
III, we introduce the implicitly restarted Lanczos method ascending order. A logarithmic scale is used for the lk axis. Z is con-
(IRLM) of Sorensen and coworkers [4]. Section IV con- structed for collinear H 1 H2 R H2 1 H reaction for a scattering energy

of 0.86 eV.tains the extensions that we are proposing. Finally, in Sec-
tion V, we present results for the collinear H3 system.

II. THE PROPERTIES OF Z
N(E), Eq. (4). The contributions from the other eigenval-

By definition, the absorbing potential, «r , in Eq. (3) ues can be ignored when calculating N(E).
becomes vanishingly small at coordinates outside the re- Manthe and Miller [3d] have also discussed the relation-
actant absorbing region (this is also the case for «p outside ship between the ABC–DVR formulation and transition
the product absorbing region). This will cause numerical state theory. The basic conclusion from this discussion is
problems in determining Z because of the factors «21/2

r that eigenvalues, which contribute significantly to N(E),
and «21

p in this equation. To avoid this problem, we utilize correspond to transition states. Moreover, the very large
the modification proposed by Manthe and Miller [3d] and eigenvalues that make very small contributions are an arti-
add a constant ‘‘floor’’ «0 to the absorbing potentials, i.e., fact of the absorbing potentials. Because of the connection

between the contributing eigenvalues and the transition
«r R «r 1 «0 (5) states, one expects the following: the higher the total en-

ergy, the larger the number of eigenvalues that may con-
«p R «p 1 «0 . (6)

tribute significantly to N(E); the higher the dimensionality
of the reaction system, the larger the number of eigenval-

In the final stages of the calculation, it is necessary to check ues that contribute significantly to N(E); and the number
whether «0 is small enough to introduce a negligible error of contributing eigenvalues is always much less than the
in the eigenvalues of Z. number of DVR basis functions.

Since Z is a Hermitian matrix, all of its eigenvalues are Because of the connection between transition states and
real-valued. Manthe and Miller [3d] further proved that the contributing eigenvalues, these eigenvalues and their
all eigenvalues of Z are greater than or equal to 1. In this corresponding eigenvectors will be referred to as the physi-
paper, we focus on the collinear H 1 H2 R H2 1 H reaction cal eigenvalues and the physical eigenvectors. Since the
system as a simple illustration of the various aspects of large eigenvalues of Z are an artifact of the absorbing
our proposed approach to obtaining the eigenvalues, lk , potentials, they and their corresponding eigenvectors are
of Z. Figure 1 contains a plot of lk versus k for this reaction referred to as nonphysical eigenvalues and the nonphysi-
for a scattering energy, E, equal to 0.86 eV. The eigenvalues cal eigenvectors.
are on a logarithmic scale. From this graph, one can see From Fig. 1, it is apparent that all the nonphysical eigen-
that for this particular scattering energy there are just two values lie on a straight line in the semilog plot. This means
eigenvalues less than 10, while all the other eigenvalues
are larger than 104. At this particular energy, only two
eigenvalues will contribute significantly to the sum for lk P C1eC2k (7)
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for all the nonphysical eigenvalues. Therefore, the distance where the first column of U equals v1 and eT
k is the transpose

of the kth unit vector.between the adjacent nonphysical eigenvalues is approxi-
mately The procedure for determining the Lanczos factorization

requires k Lanczos vectors. Beginning with the first
Lanczos vector v1 , the other Lanczos vectors are calculatedlk11 2 lk P C1eC2k(eC2 2 1). (8)
based on the previous Lanczos vectors; specifically,

This means that (lk11 2 lk) increases exponentially as k
increases for the nonphysical eigenvalues. Thus for the

w 5 Zvi 2 Oi

j51
kvjuZvilvj (12)nonphysical eigenvalues, the eigenvalue distribution be-

comes more and more sparse as the eigenvalues increase.
A characteristics of the eigenvalue spectrum of Z that and

is of interest here is the extremely large span of the eigen-
values—with a few eigenvalues clustered at the lower end

vi11 5
w

iwi
. (13)of the spectrum and many very large eigenvalues. In Fig. 1,

the largest eigenvalue equals 3.34 3 109, while the smallest
eigenvalue equals 1.30, which is 2.6 3 109 times smaller After k Lanczos vectors are calculated, U can be written as
than the largest eigenvalue.

A notable feature of Fig. 1 is that there is a large gap U 5 (v1 v2 · · · vk) (14)
between the lowest nonphysical eigenvalue and the highest
physical eigenvalue. Because Fig. 1 is a semilog plot, this and the elements of H are given by
gap means the ratio lnonphy/lphy is very large. For the scat-
tering energy indicated, 0.86 eV, this ratio is over 150.

Hij 5 kviuZuvjl (15)
Another aspect of this approach is that one does not

need to determine N(E) to more than two or at most three
and r is

significant figures in order to generate predictions that will
have better error limits than the corresponding experimen-
tal results. r 5 IZvk 2 Ok

j51
kvjuZvklvjI. (16)

III. COMPARISON OF THE LANCZOS METHOD
The Lanczos method approximates the eigenvalues ofAND IRLM

Z with the eigenvalues of H. To obtain accurate eigen-
To determine N(E) one needs to calculate the smallest values at the upper or the lower ends of the eigenvalue

eigenvalues of the matrix Z, Eq. (3). If the order of the spectrum, one has to increase the size of the Lanczos
matrix Z, is small enough one can use standard dense factorization.
matrix eigenvalue routines to diagonalize Z. However, if In Section II, we showed that the eigenvalue span of Z
the order of the matrix is large, then iterative methods is very large. In one example, the largest eigenvalue of Z
may be more efficient for obtaining the small number of is about 2.6 3 109 times as large as the smallest eigenvalue
needed eigenvalues. of Z. This property makes it possible to determine a few of

The Lanczos method [5] is one of the most popular the largest, nonphysical eigenvalues of Z using the Lanczos
iterative methods for obtaining eigenvalues of a large method but makes it impossible to determine directly the
Hermitian matrix. The core of the Lanczos method is the lowest, physical eigenvalues. This is because the largest
Lanczos factorization. Starting with an initial vector v1 , eigenvalues of Z are so much larger than the small ones
the k step Lanczos factorization produces a k 3 k upper of interest that the vector space generated by the Krylov
Hessenberg matrix H, which satisfies procedure—i.e., the vectors generated by successive multi-

plication of the initial vector by the matrix Z—picks out
ZU 5 UH 1 reT

k (9) the vector space spanned by the largest eigenvalues of Z.
This is exactly the opposite of the vector space one is

where U [ Cn3k satisfies interested in for this application. Therefore only negligible
components of the physical eigenvectors are incorporated

U†U 5 Ik (10) in the Krylov space until the dimension of the Krylov space
approaches the full dimension of Z. This property of the

and r [ Cn satisfies Lanczos method is well known and was noted by Miller
and coworkers [3d] in their earlier work. In contrast to the
Lanczos method, the implicitly restarted Lanczos methodU†r 5 0, (11)
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(IRLM) [4] uses a different strategy to calculate a few of where e1 , e2 , ..., ep , are the p shifts and t is a normalization
factor. In this way, the unwanted eigenvectors are cast outthe largest or smallest eigenvalues of a matrix. Assuming

that one is looking for the k smallest eigenvalues of matrix from v1 by the IRLM. This process is continued until the
initial vector v1 is forced into a subspace spanned by theZ, where k is a fixed prespecified integer of modest size

and letting p be another positive integer of modest size, k lowest eigenvectors.
There are several major advantages of the IRLM methodthe result of k 1 p steps of the Lanczos process applied

to Z leads to over Lanczos methods for this project: (1) The usual
Lanczos factorization scheme can generate ‘‘ghost’’ eigen-
values when the number of the steps becomes large. IRLMZUk1p 5 Uk1pHk1p 1 reT

k1p ; (17)
avoids this problem by keeping the number of steps fixed
to a moderate value. (2) IRLM is a self-consistent recursiveagain Uk1p and r satisfy Eqs. (10) and (11) with k now
algorithm—numerical errors in the earlier stages are cor-replaced by k 1 p.
rected in the later stages. (3) The Lanczos method calcu-Now the eigenvalues of Hk1p may be determined and
lates the k lowest eigenvalues out of a large Lanczos factor-the p largest eigenvalues are selected to form the set he1 ,
ization; to keep IRLM process moving, one needs only toe2 , ..., epj. Then for each e in this set an ‘‘implicit shift’’
calculate the p largest eigenvalues of a k 1 p Lanczosprocedure is applied to the matrices U and H. The first
factorization accurately. Numerically the calculation of thestep of this ‘‘implicit shift’’ procedure is to compute the
largest eigenvalues is more favorable because the spacingQR-factorization
between the adjacent eigenvalues is larger for larger eigen-
values (see Eq. (8)).

Hk1p 2 eIk1p 5 QR, (18) Because of the unique characteristics of the matrix Z
(see Section II for details), the application of the IRLM

with Q being an unitary matrix and R being an upper for this project requires some changes in the standard
triangular matrix. Next Uk1p and Hk1p are updated to IRLM. We will describe two of the most important changes

needed for this application in the next section.
Uk1p R Uk1pQ (19)

Hk1p R Q†Hk1pQ. (20) IV. CHANGES TO THE IRLM

A. Chebychev PreconditioningAfter p implicit shifts are done, Uk1p and Hk1p are parti-
tioned into There are two fundamental computational costs associ-

ated with IRLM. One is the cost of the internal numerical
Uk1p 5 (U1

k Ûp) (21) operations required to perform the IRLM itself. For each
iteration step, this cost is related to the size of the Lanczos
factorization k 1 p. The other is the cost associated withHk1p 5 1 H1

k M

bke1eT
k Ĥp

2. (22)
performing a matrix–vector product with the matrix Z.
Typically in this application, k 1 p is much smaller than

Sorensen [4] showed that U1
k and H1

k are a legitimate the size of Z and as a result the matrix–vector operation
Lanczos factorization of Z; i.e., dominates the computing time.

The second factor that has a significant impact on the
total computing time is the number of iterations requiredZU1

k 5 U1
kH1

k 1 r1
keT

k (23)
to obtain convergence. In general, the IRLM takes fewer
iterations when the eigenvalue distribution around the de-and r1

k satisfies Eq. (11).
sired eigenvalues is more sparse than the rest of the spec-After the implicit shift series from Eq. (18) to Eq. (23),
trum. However, from the discussions in Section II, one canEq. (23) is used as the starting point for another Lanczos
see that the eigenvalue distribution of Z is such that thefactorization. The result is a Lanczos factorization similar
highest eigenvalues are in the most sparse region of theto that of Eq. (17). At this point the whole process of going
eigenvalue spectrum—the opposite of the desired distri-from Eq. (17) to Eq. (23) and then back to Eq. (17) starts
bution.again. Sorensen [4] also showed that each cycle of this loop

A standard way to accelerate convergence of a Lanczosreplaces the initial vector v1 by
algorithm or IRLM is to find the eigenvectors of a poly-
nomial function of the matrix and then to use the eigenvec-
tors to compute the desired eigenvalues of the originalv1 R

1
t p

p

j51

(Z 2 ejI)v1 , (24)
matrix via Raleigh quotients; i.e., first compute
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f(Z)q 5 eq (25) In contrast, the difference between the preconditioned ei-
genvalues equals

for q, then compute l from

l91 2 l92 5 p
m

j51
S1 2

l2

ej
D2 p

m

j51
S1 2

l1

ej
D

l 5
q†Zq
q†q

. (26)
P Om

j51

l1

ej
2 Om

j51

l2

ej
.

(30)

Pendergast, Darakjian, Hayes, and Sorensen [6] showed
Here we use the approximation that a0/ej P 0, j 5 1, ...that a Chebychev polynomial is a good choice for f when
m. In the case where a0 ! a1 , Eq. (30) can be furtherobtaining the surface functions for reactive scattering using
simplified tothe Parker–Pack method [7]. The tests carried out as part

of this work demonstrate that a Chebychev polynomial
can be a very effective preconditioner for this application

l91 2 l92 P (l1 2 l2) Om
j51

1
ejas well. The Chebychev polynomial wm used in this study

is defined as

P (l1 2 l2)
2
a1
Om
j51

1

1 1 cos S(2j 2 1)f
2m Dwm(Z) 5 I 2 p

m

j51
SI 2

Z
ej
D, (27)

P (l1 2 l2)
2m2

a1
.

(31)

where

This means that the ratio (l19 2 l29)/(l1 2 l2) increases as
ej 5 c 1 b cos(hj), hj 5

(2j 2 1)f
2m

, j 5 1, 2, ..., m, (28) m2 for mth order Chebychev preconditioning.
The second positive effect of the Chebychev precondi-

tioning is to shift the nonphysical eigenvalues toward the
where c is the center and b is half the length of the interval unwanted end of the resulting spectrum without intermin-
(a0 , a1). One can easily verify from Eqs. (27) and (28) that gling them with the eigenvalues associated with the physi-
the preconditioned eigenvalue will be within (0, 2), if, as cal eigenvectors. To see this, we define a quantity P as
in this application, the original eigenvalues lie in the range
(0, a1). Another desirable property is that, if an eigenvalue
l is in [a0 , a1), wm(l) is always greater or equal wm(a0); P 5 2 O

jnonphysical

Sln
lj 2 lmin

lmax 2 lmin
D, (32)

while if an eigenvalue l is in (0, a0), wm(l) is always less
than wm(a0).

In this application, a1 is slightly higher than the largest where lmin is the minimum eigenvalue and lmax is the
maximum eigenvalue. It is evident that P is always largereigenvalue of Z, and a0 is higher than the largest physical

eigenvalues of Z. This selection ensures that: (1) after than 0 because lj 2 lmin is always less than lmax 2 lmin .
Generally speaking, for fixed dimension matrix, the biggerpreconditioning, all the eigenvalues will be within (0, 2);

(2) the physical eigenvalues will still be smaller than non- P is, the closer its eigenvalues are to lmin .
In one test, before preconditioning, the quantity P forphysical eigenvalues after preconditioning.

The Chebychev preconditioner modifies the eigenvalue Z equals 513.8; after preconditioning of order 5, the value
of P becomes 278.4; after preconditioning of order 20, thedistribution in such a way that the resulting eigenvalue

distribution (i.e., the Chebychev polynomial evaluated for value of P becomes 161.9. This result demonstrates that
on the average, ln(lj 2 lmin)/(lmax 2 lmin) is reduced tothe eigenvalues of the original matrix) is less dense for the

eigenvectors of interest—the physical eigenvectors. This about one-half after Chebychev preconditioning of order
5; ln(lj 2 lmin)/(lmax 2 lmin) is reduced to about one-can be seen easily if one examines two eigenvalues l1 and

l2 , and assumes that both l1 and l2 are much less than third after Chebychev preconditioning of order 20. In the
following sections, it will be evident that our tests showej , j 5 1, ..., m, given by Eq. (28). Before the precondi-

tioning, the ratio between l1 2 l2 and the range of the this trend.
eigenvalues is such that

B. Calculation of Multiple Eigenvalues

In the previous subsection, we discussed utilizing al1 2 l2

lmax
R e2C2kmax. (29)

Chebychev preconditioning of the Z-matrix prior to IRLM
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iterations. While it might appear that this approach could factorization to calculate k physical eigenvalues and eigen-
vectors simultaneously fails even if v1 is in the subspacebe used to determine as many physical eigenvectors and

eigenvalues as the particular application required, we have spanned by the k physical eigenvectors within double preci-
sion accuracy. This problem cannot be circumvented bynot found this to be the case in actual practice. The ap-

proach can be used to calculate up to two physical eigenval- calculating the physical eigenvalues one-by-one using
IRLM, because the differences between the physical eigen-ues of Z. However, when more than two physical eigenvec-

tors are needed we have found that the method frequently values are very small compared to the eigenvalue span of
Z. As a result, the convergence of IRLM will be very slowencounters numerical problems. In the next paragraphs,

we will discuss the reason for this. if one attempts to compute these eigenvalues separately.
In this study, we have investigated two approaches toAfter a series of IRLM iterations on the Chebychev

preconditioned Z matrix, the initial vector v1 of the calculate the k physical eigenvalues and eigenvectors after
v1 has been projected onto the subspace spanned by theLanczos factorization will almost fall in the subspace

spanned by the k physical eigenvectors. The reason why k physical eigenvectors. In the first approach, we choose
one vector v1 , then apply the IRLM process to the Cheby-v1 cannot totally fall into that subspace is because all of

our computations are carried out on finite length floating chev preconditioned matrix to cast out the nonphysical
eigenvectors in v1 . After v1 is mostly forced into a subspacepoint numbers. Therefore, instead of
spanned by the k physical eigenvectors, we calculated the
physical eigenvectors and eigenvalues using Lanczos fac-v1 5 O

physical
aiui , (33)

torization with Z21—the inverse problem. The large ratio
between the nonphysical eigenvalues and physical eigen-

one actually gets values makes the Lanczos factorization on Z lose accuracy,
but this large ratio will not be a problem for Z21, because

v1 5 O
physical

aiui 1 O
nonphysical

bjwj . (34) for Z21 the nonphysical eigenvalues become very small
eigenvalues. The main cost of this approach is one IRLM
iteration to calculate v1 succeeded by k 2 1 solutions of

Here ui are physical eigenvectors and wj are nonphysical the simultaneous linear equations Zx 5 y. When the size
eigenvectors. For double precision computations, the ubj u of Z is too large to be stored in core, the solution of
are typically around 10217. Although bj are already small Zx 5 y can still be obtained through an iterative method,
numbers, the impurity within v1 still makes it difficult or such as the conjugate gradients [8] and generalized mini-
impossible without special provisions to calculate the phys- mum residue method (GMRES) [9]. But this can be time
ical eigenvalues using IRLM alone when the number of consuming because Z is a dense matrix.
physical eigenvalues is larger than 2. Manthe and Miller [3d] proposed applying the Lanczos

After v1 is almost in the subspace spanned by the k method to the inverse problem Z21 to calculate the lowest
physical eigenvectors, the IRLM program uses Lanczos eigenvalues of Z. In their approach, the minimum number
factorization to calculate the k physical eigenvectors and of solutions of Zx 5 y is k 2 1; usually the number of
eigenvalues. The procedure is as follows: Starting with v1 , solutions required will be higher because their initial vector
the k step Lanczos factorization produces k 2 1 Lanczos is not in the subspace spanned by the k physical eigenval-
vectors v2 , ..., vk , where vi is related to v1 , ..., vi21 by ues. When the cost of an IRLM iteration is competitive

with the solution of Zx 5 y, our first approach will be
h 5 Zvi21 favorable because we have limited the number of solutions

of Zx 5 y to k 2 1.
v̂i 5 h 2 Oi21

j51
kvj uhlvj In the second approach we calculate multiple physical

eigenvalues as follows. Instead of trying to calculate k
physical eigenvalues from one ‘‘good’’ initial vector v1 ,vi 5

v̂i

iv̂ii
.

(35)

we calculate them from k ‘‘good’’ initial vectors. First we
selected k linear independent vectors ti , i 5 1, ..., k; then
we apply the IRLM process to the preconditioned matrixAs noted in Section II, the physical eigenvalues of the

Z matrix generally are greater than one and less than for each vector ti to force ti into the subspace spanned by
the k physical eigenvectors. After most of the nonphysical100, while the largest nonphysical eigenvalue is about 1010.

Since the ratio between the largest nonphysical eigenvalue eigenvector parts are cast out, ti can be written as
and typical physical eigenvalues is so large, even if ubj u for
the largest nonphysical eigenvalue only equals 10217, v3

will already be dominated by the nonphysical eigenvectors! ti 5 Ok
j51

aijuj 1 On
l5k11

bilwl . (36)
Because of this, when k is greater than two, using Lanczos
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Here as in Eq. (34), bil are small numbers—very close to as low as 10217! This means that the error can be neglected
if the pk space is close enough to a subspace spanned byzero. For double precision calculations, ubilu can be as small

as 10217. On the other hand, aij are generally not close the k physical eigenvectors.
Operationally, the first approach needs one IRLM itera-to zero, since physical eigenvector components are not

reduced effectively by the IRLM process because these tion and k 2 1 solutions of the simultaneously linear equa-
tions Zx 5 y; the second approach, on the other hand,eigenvalues are still very close together, even after precon-

ditioning with a modest order Chebychev polynomial. needs k IRLM iterations but no solutions to the linear
equations. In the three atom collinear calculations, theThen we construct a linear orthogonal basis from htij,

and name the basis vectors pi . Next a representation of Z first approach is always more efficient than the second
approach, because it always takes less time to solve Zx 5under basis hpij is determined; i.e., we calculated a k 3 k

matrix Y, y (k 2 1) times than to converge (k 2 1) additional IRLM
iterations. However, regardless of the relative computa-
tional time for the collinear system, there are some proper-Yi j 5 kpiuZupjl. (37)
ties of the second approach that may make it more favor-
able for the higher dimensional problems that must beFinally, we approximate the physical eigenvalues of Z by
solved for full 3D studies of four and five atom chemicalthe eigenvalues of Y, and approximate the physical eigen-
reactions. When using the second approach one can alwaysvectors of Z by
exploit the spareness features of the underlying Hamilto-
nian needed to determine Z. This is possible because the

qi 5 Ok
j51

ci jPj , (38) only requirement for the IRLM process is to be able to
compute Z multiplied into a vector. As a result one does
not need to assemble the dense matrix Z. However, in thewhere (ci1 , ..., cik) is the ith eigenvector of Y.
first approach, which involves the solutions of Zx 5 yUnlike the Lanczos factorization, this approach con-
for x, one must sacrifice the underlying sparseness of thestructs an expansion basis of the physical eigenvectors with-
Hamiltonian that is used to determine Z.out obtaining Znv1 . This difference is crucial because the

When the problem size becomes extremely large, theoperation Znv1 introduces much greater contamination
ability to fully exploit the sparseness of the Hamiltonianfrom the nonphysical eigenvector components than the
becomes a major advantage, since in this case a largerpresent method produces in v1 . One can see why the ap-
percentage of the required data can be stored in core mem-proach works by looking at an error estimate for the com-
ory. Another advantage of the second approach is that itputed eigenvalues. For each computed approximate eigen-
has a computational structure with a high level of parallel-vector we may write
ism—large-grain parallelism. Because the k IRLM itera-
tions use unrelated initial vectors, one can perform the

pi 5 O
physical

ai juj 1 O
nonphysical

bilwl . (39) IRLM iterations on different workstations or different
clusters of processors. Moreover, because each of the
IRLM iterations are independent, there is no interproces-As noted previously, the ubil u are very close to zero, just
sor communication between the clusters. In addition, eachlike ubil u in Eq. (36), while uai j u are generally much larger
IRLM iteration converges roughly at the same speed; con-than ubil u. The numerical errors in Yi j due to the nonphysi-
sequently the load balance of this large-grain paralleliza-cal eigenvalue part of pi are pj are
tion is very good.

There is another interesting change in the IRLM process
DYij 5 O

nonphysical
b*il bjl ll . (40) for cases where the matrix Z has more than three physical

eigenvalues. In the previous applications of IRLM [4], if
one wanted to calculate k0 lowest eigenvalues of a matrixAccording to Wielandt–Hoffman theory [10], the numeri-
A, one would set the value of k in Eqs. (17)–(23) equalcal error of li due to the nonphysical eigenvector compo-
to k0 . In other words, in every IRLM loop from Eq. (17)nents in p1 , ..., pk is less than
to Eq. (23), one first constructs a Lanczos factorization of
size k 1 p and then performs the ‘‘implicit shift’’ p times
to purify the vector v1 . In our application, when k0 . 3iDYiF 5 !Ok

i51
Ok
j51

uDYij u2. (41)
and the order of Chebychev preconditioning around 20,
the difference between the size of the Lanczos factorization
and the number of ‘‘shifts’’ is chosen to be 3 or 2 insteadBecause ubil u can be as low as 10217, while ll are at most

1010, from Eq. (41) one finds that the numerical error in of k0 (i.e., if the size of Lanczos factorization is nz, we
choose nz 2 3 or nz 2 2 ‘‘shifts’’ instead of nz 2 k0li due to the nonphysical eigenvector components can be
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‘‘shifts’’). The reason for this is discussed in the follow-
ing paragraph.

We have shown that even if v1 is in the subspace spanned
by the k physical eigenvectors within double precision ac-
curacy, v3 of the Lanczos factorization of the Z matrix is
dominated by the nonphysical eigenvectors. Following the
same line of reasoning, if m is around 20 and the eigenvalue
span of Z is around 1010, with an mth-order Chebychev
polynomial of Z as its primary matrix, the fourth Lanczos
vector, v4 , of the Lanczos factorization will also be domi-
nated by the nonphysical eigenvectors. After the mth-order
Chebychev preconditioning, the physical eigenvalues are
projected into the interval (0, t], while the nonphysical
eigenvalues are projected into the interval (t, 2]. Since
the fourth Lanczos vector is already dominated by the
nonphysical eigenvectors, the eigenvalues of Hk1p in Eq.
(17) contain at most three eigenvalues in the range (0, t].
Because ideally one wants the ‘‘shifts’’ to project out all
of the eigenvalues of Hk1p in the range (t, 2] and none of

FIG. 2. lk vs. k for Z matrix, where the eigenvalues are arranged in
the eigenvalues in the range (0, t], it is better to choose ascending order. Z is the same as that used in Fig. 1.
nz 2 3 or nz 2 2 shifts than to choose only nz 2 k0 .

V. RESULTS AND DISCUSSION 2 lmin) is reduced to about one third of its original value
after Chebychev preconditioning of order 20.Because a number of modifications of the basic IRLM

Because the eigenvalue distribution shifts toward thehave been introduced here, we have performed a number
higher end of the spectrum after Chebychev precondi-of tests to determine the effectiveness of each modification.
tioning, the IRLM process converges faster. Table I showsIn this section, we will present our computational results
the CPU time and the number of matrix–vector multiplica-for each test along with analyses of these results.
tions needed to converge the eigenvectors of Z for differentWe begin by comparing the eigenvalue distribution of Z

and that of wm(Z), where wm(Z) is a mth-order Chebychev
polynomial of Z, which is defined by Eq. (27), for the
collinear H 1 H2 R H2 1 H reaction system. Figure 2
contains a plot of lk versus k for Z for this reaction for a
scattering energy, E, equal to 0.86 eV. Figure 3 contains
the corresponding plot of lk versus k for wm(Z), where the
parameters for the Chebychev polynomial wm are m 5 20,
a0 5 5 3 104, and a1 5 3.4 3 109.

From Fig. 2, one can see that the eigenvalue distribution
of Z is very dense in the lower end and is very sparse in
the higher end; in fact for Z the ratio between the number
of the eigenvalues in the lower half on the spectrum (i.e.,
less than As of the largest eigenvalue) and the number in
the upper half of the eigenvalue spectrum is about 22 : 1.
On the other hand, the eigenvalue distribution of wm(Z)
is shifted significantly towards the higher end of the spec-
trum. Now, this same ratio of the number of eigenvalues
in the upper and lower portions of the spectrum is
about 1.8 : 1.

In Section IV we also introduced another quantity P in
FIG. 3. lk vs. k for wm(Z), where wm(Z) is a mth-order ChebychevEq. (32) that characterizes the distribution of the eigenval-

polynomial of Z given by Eq. (27). The parameters for this plot are:
ues. For matrix Z and wm(Z), mentioned in the previous m 5 20, a0 5 5 3 104, and a1 5 3.36 3 109. In this plot, the eigenvalues
paragraphs, the values of P are 513.8 and 161.9, respec- of wm(Z) are arranged in ascending order. Z is the same as that used in

Fig. 1.tively. This means that on the average, ln(lj 2 lmin)/(lmax



144 WU AND HAYES

TABLE I multiplications required to obtain convergence as a func-
tion of the Chebychev polynomial order. One can see fromCPU Time and the Number of Matrix–Vector Multiplications
this figure that the increase in the order of ChebychevNeeded to Compute the Two Lowest Eigenvalues of Z as a
preconditioning polynomial speeds up the rate of conver-Function of the Order of the Chebychev Preconditioner
gence. In addition, without Chebychev preconditioning,

Order of Chebychev Number of CPU time the IRLM iteration on Z does not convergence even after
preconditioning matrix–vector multiplications in seconds

240,000 iterations. One can also see from this figure that
2 58056 2116 the convergence speed is not improved much as m increases
3 44136 1428 beyond 20. Since higher order Chebychev preconditioning
4 29760 897 also introduces rounding errors, we use m of moderate
5 24490 705

value—in this study we use m around 20.6 18876 530
In order to demonstrate the special treatment for cases8 16368 442

10 15040 397 with more than two physical eigenvalues, we constructed
12 13536 351 Z for the H 1 H2 reaction with scattering energy equal to
14 11732 301 1.63 eV. The results obtained using the Eispack routine
16 11104 282

show that in this case there are five physical eigenvalues18 10224 257
in Z. In the previous section, we asserted that IRLM itera-20 8440 212

22 8932 223 tions on the Chebychev preconditioned Z matrix can force
24 7968 199 the initial vector of Lanczos factorization v1 to fall within
26 7228 179 the subspace spanned by the physical eigenvectors up to
28 7840 194

double precision accuracy. To demonstrate this, we com-
Note. Z is constructed for an energy of 0.86 eV. puted the overlaps between v1 and the eigenvectors of Z

after a certain number of IRLM iteration loops, where the
overlap is defined as ukui uv1lu2, where ui are the eigenvectors
of Z computed using Eispack. Because of the completenessorder Chebychev preconditioning polynomials. For this
of the eigenvectors of Z,particular example, the physical eigenvalues calculated

through IRLM differ from those determined using Eispack
by less than 1026. Because about 90% of CPU time is spent ON

i51
ukui uv1lu2 5 1; (42)

on matrix–vector multiplications, the CPU time required
is proportional to the number of multiplications calculated.
Figure 4 contains a plot of the number of matrix–vector therefore ukui uv1lu2 measures how v1 is divided among the

eigenvectors of Z. In this test, the order of Chebychev
preconditioning is 20, while the size of the Lanczos factor-
ization in every IRLM loop is 20 and the number of the
‘‘implicit shifts’’ within each IRLM loop is 17.

Table II shows how the overlaps evolve as the number
of IRLM iterations increases. In the first five rows, the
overlaps between v1 and the five physical-eigenvectors are
presented. In the last column, the total overlap with the
nonphysical eigenvectors are presented, where the last
quantity is defined as

ON
i56

ukui uv1lu2. (43)

Before the application of IRLM, v1 is dominated by the
nonphysical eigenvectors. In fact, over 95% of v1 is com-
posed of the nonphysical eigenvectors. But after only 12
IRLM loops, the physical eigenvectors already begin to
dominate v1 , after 30 IRLM loops, the nonphysical eigen-
vectors constitute less than 10222 of v1 ! Another observa-FIG. 4. The number of matrix–vector multiplications required to
tion from Table II is that the relative distribution of v1 oncalculate the two lowest eigenvalues vs. the order of Chebychev polyno-

mial preconditioning. Z is the same as that used in Fig. 1. the five eigenvectors is not significantly affected by IRLM
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TABLE II would like to demonstrate how the second approach works.
In the second approach, we first construct k ‘‘good’’ vectorsThe Overlaps between v1 and the Actual Eigenvalues
using k different IRLM processes; here ‘‘good’’ means thatof Z versus the Number of IRLM Steps
the vectors are almost in the subspace spanned by the

Number of IRLM steps physical eigenvectors. In Table II, we showed that the
IRLM process is capable of forcing its initial vector intoOverlap norm 0 12 24 30
the subspace spanned by the physical eigenvectors. There-

uku1 uv1lu2 0.019688 0.470410 0.482841 0.490623 fore, in order to construct k different ‘‘good’’ vectors, we
uku2 uv1lu2 0.000573 0.013687 0.014032 0.014247 need to perform the IRLM process k times, each time
uku3 uv1lu2 0.005967 0.141736 0.144155 0.145624 starting with a different initial vector. In order to demon-uku4 uv1lu2 0.004049 0.095639 0.096417 0.096852

strate this, we use the same Z as in Table II and perform fiveuku5 uv1lu2 0.012310 0.278526 0.262554 0.252654
different IRLM processes. Each IRLM process beginning

Total overlap with 0.957 2.0 3 1026 1.9 3 10218 8.8 3 10223 with a different initial vector and after 24 IRLM loops in
nonphysical each IRLM process we calculated the overlaps of v1 of
eigenvectors

each IRLM process with the actual eigenvectors of Z. The
overlaps of these five different vectors with the physicalNote. The overlaps between v1 and the five physical eigenvectors are

presented in the first five rows. The total overlap between v1 and the eigenvectors and the total overlap with the nonphysical
nonphysical eigenvectors is presented in the last row. Z is constructed eigenvectors are tabulated in Table III. From Table III, it
for an energy of 1.63 eV. The parameters of the Chebychev polynomial

is clear that all five vectors are strongly dominated byused in this table are: m 5 20, a0 5 1.5 3 105, a1 5 2.3 3 1010.
the physical eigenvector components. Next we construct a
linear orthogonal basis from these five vectors and then
calculate the matrix Y defined in Eq. (37). Finally, weiterations, the reason is that the differences among the
compute the eigenvalues of Y. As shown in the previousphysical eigenvalues are very small compared with the
section, the resulting eigenvalues of Y should be very closedifferences between the physical and nonphysical eigenval-
to the physical eigenvalues of Z (Eq. (41)). The actualues, the physical eigenvalues appear degenerate to the
results for the H 1 H2 case shows that the eigenvaluesIRLM routines.
calculated this way and those calculated using EispackWe showed in the previous section that although v1 is
routines differ by less than 1027.almost in the subspace spanned by the five physical eigen-

In Section IV, we also discussed how many ‘‘shifts’’vectors, the impurity within v1 still makes it impossible to
should be used after getting Eq. (17) within each IRLMcalculate the physical eigenvalues from v1 alone. However,
loop when the number of physical eigenvalues is largerwe also showed that there are two approaches that can be
than or equal to 3. Our conclusion is that the optimalused to overcome the impurity problem. The first ap-
number should be nz 2 3 or nz 2 2. In order to illustrateproach, namely constructing Lanczos factorization with

Z21 as the primary matrix obviously works; therefore we this idea, we ran four IRLM processes. All four processes

TABLE III

The Overlaps between Five Different v1 with the Eigenvectors of Z

Process number

Overlap 1 2 3 4 5

uku1 uv1lu2 0.482842 0.364583 0.199255 0.656706 0.031852
uku2 uv1lu2 0.014032 0.133521 0.083481 0.033716 0.331736
uku3 uv1lu2 0.144156 0.057743 0.420015 0.139242 0.198823
uku4 uv1lu2 0.096417 0.124227 0.148212 0.065702 0.304155
uku5 uv1lu2 0.262553 0.319926 0.149037 0.104634 0.133434

Total overlap with 1.9 3 10218 8.7 3 10218 7.9 3 10218 5.1 3 10218 2.6 3 10217

nonphysical eigenvectors

Note. Each v1 is obtained by first choosing a random vector, and then each random vector undergoes a 24-step IRLM ‘‘purification.’’ The overlaps
between different v1 and the five physical eigenvectors, ui , are presented in the first five rows. The total overlap between v1 and the nonphysical
eigenvectors is presented in the last row. Z is constructed at the energy of 1.63 eV. The parameters of the Chebychev polynomial used in this table
are: m 5 20, a0 5 1.5 3 105, a1 5 2.3 3 1010.
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differences between the first two choices and the last two
choices are obvious when the impurity in v1 is less than 1024.

In these tests on the collinear H 1 H2 R H 1 H2 reaction,
the CPU time required to compute the eigenvalues of Z
is at least 100 times longer for our approaches than that
of Eispack routines applied directly to the inverse of the
matrix, as implemented by Miller and coworkers [3]. This
is especially true for the second approach of Section V that
we proposed to calculate multiple physical eigenvalues,
because we need to run k IRLM processes to get k ‘‘good’’
vectors. Therefore, the computational cost of the second
approach is also proportional to k, the number of physical
eigenvectors of Z. However, the relative speed can be
expected to change when one is dealing with much bigger
problems (e.g., three atom 3D reactions and four atom 3D
reactions) because in these larger systems, the sparseness
features in the Hamiltonian will be much more significant.
Since the IRLM algorithm can take full advantage of theseFIG. 5. The total overlap of v1 with the nonphysical eigenvectors of

Z (defined by Eq. (43)) vs. the number of matrix–vector multiplications sparseness features the method scales more favorably than
performed. Here the total overlap is plotted on a logarithmic scale. The traditional eigenvalue methods as the length of the vector
numbers of ‘‘shifts’’ taken as each IRLM iteration loop are different for is increased.
the four curves in this plot. For ‘‘diamond,’’ ‘‘cross,’’ ‘‘asterisk,’’ and
‘‘triangle’’ curves, the number of ‘‘shifts’’ are nz 2 2, nz 2 3, nz 2 4,
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